Ch1-QT7:

Ch2-QT:

Ch8-Q1:

Suggested solution of HW5

(a) If Jw| < 1, consider the holomorphic map z — (w — 2z)/(1 — wz) on D. By maximum

principle,
w— 2z w—z
—| < sup — .
'l—wz p |1—wz
On dD, z = 1/z,
w—2z wW—2 w—zzw—1

= 1.

l—wzl—wz 1-wzz—w
Conclusion followed. (I am sorry that I am too lazy to compute it directly.)
(b) i. Clearly, F' is holomorphic. If |F(a)| = 1 = supp |F| for some a € D, by max-

imum principle or open mapping mapping, F' is constant map which is clearly
impossible. So, F': D — D.

ii. By direct computation.
iii. As illustrate in part (a).
iv. It can be checked that the inverse of F' is given by

WtZ . p_,p.

F7l(z) = s

Consider g(z) = w on D in which ¢g(0) =0 and |g(z)| < 1. By Schwarz Lemma,
2
12190 = 2|7'0)].

Suppose o = f'(a) # 0. Writing f(z) = h(z)(z — a) + f(a). There exists a ball B(a,r)
such that on B(a,r),

Thus, on dB(a,r),
1f(z) —alz —a)| = |h(z) — allz — a

< r-|3’ < |h(2)||z — al.

For all w € B(a,r), f(z) —w has same number of zeros with «(z — a) — w in B(a,r). So
it is one-one as a(z — a) — w is linear.

Suppose f is local bijection. If f’(a) = 0 for some a € U, without loss generality, we
assume f(a) = 0,a = 0. So we can write f(z) = 2"™h(z) where h(z) is holomorphic,
h(0) = a # 0 and m > 2. There exists a ball B(0,r) such that

|h(z) —a| < |a|/4, on B(a,r).
So, on 0B(a,r)
£ (2) —az"[ = [h(z) —al -7 <a|r™/4 < |a[2|™.

By Rocuh’s theorem, f(z) has same number of zeros with az", which is clearly not injective
when m > 2.
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Ch8-Q4:

Ch8-Q5:

Ch8-Q10:

Ch8-Q12:

Ch8-Q13:

Consider the biholomorphic map from D to H, z +— (z + 1)/(z — 1). Then composite it
with the map z +— 23.

If w e H, 22+ 2zw + 1 = 0 has two distinct roots. Thus it is injective. Write z = re®,
where 0 <r < 1, t € (—m, ) then
1 1 L1
NV=_27T it - —it
z) 5 m(re" + € )
r?—1

r

1

).

5 Sin (

This takes all value in RT.

Consider the biholomorphism ¢ : D — H by ¢(z) = z%jri . Then

G=Fop:D—=D
and G(0) = 0. Apply Schwarz Lemma to conclude that
P(p(2))] < 2], V2 eD.
By taking inverse of ¢, we can conclude the desired result.

(a) Suppose a, b are two distinct fixed point of f, consider the map ¢ : z — (z—a)/(1—az),
the map g = ¢ o f o ¢! satisfies

g(0)=0, and g¢:D — D.
By Schwarz lemma,
l9(z)| < |z[ onD.

Since b is another fixed point of f and thus of g, so it implies that g(z) = cz for some
constant |c¢| = 1. More precisely,

So, c=1, and f(z) = z.
(b) No, consider the conformal map from D to H. We can identify the unit disc with the
upper half plane. But the translation z +— z — 1 has no fixed point.

(a) For w fixed. Denote g(z) = M and let ¢(z) = 1Z:_1;UZ

“ - fw)/(z)
satisfies h(0) = 0 and |h(2)| <1 for all |z| < 1. By Schwarz lemma,

h(2)] < |l Vol < L.

. Then h =gop

Therefore,
= |h(e™H(2)] < o ()] = | =] .
lg()l = (e (] < le™ () = |7
By replacing f by f~!, we have the full conclusion.
(b) Rearranging the inequality,
1)~ Jw)| _ 1= F@ise)
z—w - 1 —wz

Since f is complex differentiable, we may let w — z which implies

) 1
T 1f()E = 122
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Add ex Q1: f1 = ﬁi first map the upper half disk onto the first quadrant. Then f(2) = 22 maps it
to upper half plane. Using the conformal equivalence between the upper half plane and

disk again.

Add ex Q2: By mean of conformal map, we can identify the half strip with {z € C : Re(z) > 0,Im(z) €
(0,7)}. Then try the map z — cosh z.

Add ex Q3: We first show that the area of €2 is given by / |f'(2)|dzdy.
D

yQ|:/dA
Q

As f provides a parametrization for 2, Write f = u + iv, we have

(u,v)
dA :/ L dxdy.
/Q D a(x,y)

Let’s compute the Jacobian matrix.
uv)| _ duov oudw
d(x,y)| '0xdy Oyox

_Qudu  dudu
- 9z 0x Oy Oy
= [Vul* = |f'(2)]*

Putting it back to obtain the result, we get

1 21
Q) = / /(2)Pdedy = / / |/ (ret®) Prdrdt.
D 0 0
Let

flz) = Z an2"
n=0

be its power expansion at 0. Then

00 oo
f’(reit) _ Zannrn—leit(n—l) _ Zan+1 (7’L + l)rneint.
n=1

n=0

1 2w 1 2w X
/ / |f/(reit)‘27-drdt = / / Z At 1Gma1 (n 4 1)(m + 1)Tm+neit(n—m)rdrdt
0 0 0 0 m,n=0
> 1 2
= Z Ap+1Gmi1(n+1)(m+1) </ rm+”+1dr> . </ elt(n—m)dt>
0 0

m,n=0

o0
= lant1PP(n+1)*@2n+2)"" - 27

n=0

e.¢]
= Z |an|*nm.
n=1
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Add ex Q4:

Add ex Qb:

Without loss of generality, we assume a = 0,b = 1. Let M > C be a constant such that
|f(2)] <M on {z:Re(z) € (0,1)} =8S.

And |f(2)] < C on 8S. We claim that |f(z)] < C on S. Consider g = f(z)e**. On 85,
when z =1y

l9(2)| < Ce’ < C
When z =1+ 4y,
g(2)] < Cef0+w)?| < Cee—v?),
When z € int(S), write z = x + iy where z € (0,1),y € (—o0, +00),
g(2)] < M@ =v") < prec(1-v?)

There exists T' > 0 such that for all |y| > T, Me(1=v*) < C.
Apply maximum principle on {z : Re(z) € (0,1), [Im(z)| < T} = Q. We know that on €,

l9(2)| < sup|g(w)| = Ce*.
o

On the other hand, when |Im(z)| > T,
l9(z) < C

Combine all results, we have
lg(z)| < Ce® on S

Which implies
2
|f(2)] < Ce‘e .

Letting € — 0 to conclude it.

The spirit of the proof is essentially same with the content of tutorial 29/11 except that
you are required to map everything back to strip in order to apply Three strip theorem. I
here give a detailed proof in the tutorial.

Claim: lim;_, [f(z)] =1 or 7.

Suppose we can find {x,, }, {yn} so that |y,|, |z,| = 1 but | f(z,)| < y/r1 and |[f(yn)| > /1,
for all n. By continuity, there exists |z,| — 1 so that |f(zn)| = \/r1. But since 0B s is
compactly contained in A(1,r2). The inverse is still compact which is away from 0A(1,r1).
This contradicts with the existence of z,. So we may assume that if |z| close enough to 1,
then |f(z)| will be close to 1.

By Bolzano Weierstrass theorem and open mapping theorem, every |z,| — 1 has a
convergent subsequence so that |f(z,)| — 1. Therefore, the claim is true. Similarly,

my, o, [f(2)] =12

By three circle theorem or maximum principle on log | f|, for any z € A(1,r1),

log |z|

log|f] = log 7.

log 1
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That is |f| = |z|%, where o = logry/logr;. Noted that z® is not necessarily well defined
on A(1,r1). If « is integer, then we can apply open mapping theorem and injectivity to
conclude that @ = 1. To show this,

0
7z) ~ 087

_ 0 2
—aloglf!

= ()z({ilog\,ﬂ2

=az L.

Integrating over a sphere inside A(1,71) and uses argument principle, we conclude that
a €.



