
Suggested solution of HW5

Ch1-Q7: (a) If |w| < 1, consider the holomorphic map z 7→ (w − z)/(1− w̄z) on D. By maximum
principle, ∣∣∣∣ w − z1− w̄z

∣∣∣∣ ≤ sup
D

∣∣∣∣ w − z1− w̄z

∣∣∣∣ .
On ∂D, z̄ = 1/z,

w − z
1− w̄z

w̄ − z̄
1− wz̄

=
w − z
1− w̄z

zw̄ − 1

z − w
= 1.

Conclusion followed. (I am sorry that I am too lazy to compute it directly.)

(b) i. Clearly, F is holomorphic. If |F (a)| = 1 = supD |F | for some a ∈ D, by max-
imum principle or open mapping mapping, F is constant map which is clearly
impossible. So, F : D→ D.

ii. By direct computation.

iii. As illustrate in part (a).

iv. It can be checked that the inverse of F is given by

F−1(z) =
w + z

1 + w̄z
: D→ D.

Ch2-Q7: Consider g(z) = f(z)−f(−z)
d on D in which g(0) = 0 and |g(z)| ≤ 1. By Schwarz Lemma,

1 ≥ |g′(0)| = 2

d

∣∣f ′(0)
∣∣ .

Ch8-Q1: Suppose α = f ′(a) 6= 0. Writing f(z) = h(z)(z − a) + f(a). There exists a ball B(a, r)
such that on B(a, r),

|h(z)− α| < |α|
4
.

Thus, on ∂B(a, r),

|f(z)− α(z − a)| = |h(z)− α||z − a|

< r · |α|
4

< r · |α|
2
< |h(z)||z − a|.

For all w ∈ B(a, r), f(z)− w has same number of zeros with α(z − a)− w in B(a, r). So
it is one-one as α(z − a)− w is linear.

Suppose f is local bijection. If f ′(a) = 0 for some a ∈ U , without loss generality, we
assume f(a) = 0, a = 0. So we can write f(z) = zmh(z) where h(z) is holomorphic,
h(0) = α 6= 0 and m ≥ 2. There exists a ball B(0, r) such that

|h(z)− α| < |α|/4, on B(a, r).

So, on ∂B(a, r)

|f(z)− αzm| = |h(z)− α| · rm < |α|rm/4 < |α||z|m.

By Rocuh’s theorem, f(z) has same number of zeros with αzm, which is clearly not injective
when m ≥ 2.
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Ch8-Q4: Consider the biholomorphic map from D to H, z 7→ (z + 1)/(z − 1). Then composite it
with the map z 7→ z3.

Ch8-Q5: If w ∈ H, z2 + 2zw + 1 = 0 has two distinct roots. Thus it is injective. Write z = reit,
where 0 ≤ r < 1, t ∈ (−π, π) then

−1

2
Im(z +

1

z
) = −1

2
Im(reit +

1

r
e−it)

= −1

2
sin t · (r

2 − 1

r
).

This takes all value in R+.

Ch8-Q10: Consider the biholomorphism ϕ : D→ H by ϕ(z) = i1−z
1+z . Then

G = F ◦ ϕ : D→ D

and G(0) = 0. Apply Schwarz Lemma to conclude that

|F (ϕ(z))| ≤ |z|, ∀z ∈ D.

By taking inverse of ϕ, we can conclude the desired result.

Ch8-Q12: (a) Suppose a, b are two distinct fixed point of f , consider the map φ : z 7→ (z−a)/(1−āz),
the map g = φ ◦ f ◦ φ−1 satisfies

g(0) = 0, and g : D→ D.

By Schwarz lemma,
|g(z)| ≤ |z| on D.

Since b is another fixed point of f and thus of g, so it implies that g(z) = cz for some
constant |c| = 1. More precisely,

g(φ(b)) = φ(b).

So, c = 1, and f(z) = z.

(b) No, consider the conformal map from D to H. We can identify the unit disc with the
upper half plane. But the translation z 7→ z − 1 has no fixed point.

Ch8-Q13: (a) For w fixed. Denote g(z) =
f(z)− f(w)

1− f(w)f(z)
and let ϕ(z) =

z + w

1 + w̄z
. Then h = g ◦ ϕ

satisfies h(0) = 0 and |h(z)| ≤ 1 for all |z| ≤ 1. By Schwarz lemma,

|h(z)| ≤ |z|, ∀ |z| ≤ 1.

Therefore,

|g(z)| = |h(ϕ−1(z))| ≤ |ϕ−1(z)| =
∣∣∣∣ z − w1− w̄z

∣∣∣∣ .
By replacing f by f−1, we have the full conclusion.

(b) Rearranging the inequality,∣∣∣∣f(z)− f(w)

z − w

∣∣∣∣ ≤
∣∣∣∣∣1− f(w)f(z)

1− w̄z

∣∣∣∣∣
Since f is complex differentiable, we may let w → z which implies

|f ′(z)|
1− |f(z)|2

≤ 1

1− |z|2
.



2015-16 First Term MATH4060 3

Add ex Q1: f1 = z+1
1−z first map the upper half disk onto the first quadrant. Then f2(z) = z2 maps it

to upper half plane. Using the conformal equivalence between the upper half plane and
disk again.

Add ex Q2: By mean of conformal map, we can identify the half strip with {z ∈ C : Re(z) > 0, Im(z) ∈
(0, π)}. Then try the map z 7→ cosh z.

Add ex Q3: We first show that the area of Ω is given by

∫
D
|f ′(z)|2dxdy.

|Ω| =
∫

Ω
dA

As f provides a parametrization for Ω, Write f = u+ iv, we have∫
Ω
dA =

∫
D

∣∣∣∣∂(u, v)

∂(x, y)

∣∣∣∣ dxdy.
Let’s compute the Jacobian matrix.∣∣∣∣∂(u, v)

∂(x, y)

∣∣∣∣ = |∂u
∂x

∂v

∂y
− ∂u

∂y

∂v

∂x
|

= |∂u
∂x

∂u

∂x
+
∂u

∂y

∂u

∂y
|

= |∇u|2 = |f ′(z)|2.

Putting it back to obtain the result, we get

|Ω| =
∫
D
|f ′(z)|2dxdy =

∫ 1

0

∫ 2π

0
|f ′(reit)|2rdrdt.

Let

f(z) =

∞∑
n=0

anz
n

be its power expansion at 0. Then

f ′(reit) =
∞∑
n=1

annr
n−1eit(n−1) =

∞∑
n=0

an+1(n+ 1)rneint.

∫ 1

0

∫ 2π

0
|f ′(reit)|2rdrdt =

∫ 1

0

∫ 2π

0

∞∑
m,n=0

an+1am+1(n+ 1)(m+ 1)rm+neit(n−m)rdrdt

=

∞∑
m,n=0

an+1am+1(n+ 1)(m+ 1)

(∫ 1

0
rm+n+1dr

)
·
(∫ 2π

0
eit(n−m)dt

)

=
∞∑
n=0

|an+1|2(n+ 1)2(2n+ 2)−1 · 2π

=

∞∑
n=1

|an|2nπ.
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Add ex Q4: Without loss of generality, we assume a = 0, b = 1. Let M > C be a constant such that

|f(z)| ≤M on {z : Re(z) ∈ (0, 1)} = S.

And |f(z)| ≤ C on ∂S. We claim that |f(z)| ≤ C on S. Consider g = f(z)eεz
2
. On ∂S,

when z = iy

|g(z)| ≤ Ce−εy2 ≤ C

When z = 1 + iy,

|g(z)| ≤ C|eε(1+iy)2 | ≤ Ceε(1−y2).

When z ∈ int(S), write z = x+ iy where x ∈ (0, 1), y ∈ (−∞,+∞),

|g(z)| ≤Meε(x
2−y2) ≤Meε(1−y

2)

There exists T > 0 such that for all |y| ≥ T , Meε(1−y
2) ≤ C.

Apply maximum principle on {z : Re(z) ∈ (0, 1), |Im(z)| ≤ T} = Ω. We know that on Ω,

|g(z)| ≤ sup
∂Ω
|g(w)| = Ceε.

On the other hand, when |Im(z)| > T ,

|g(z)| ≤ C

Combine all results, we have
|g(z)| ≤ Ceε on S

Which implies
|f(z)| ≤ Ceεe−εz2 .

Letting ε→ 0 to conclude it.

Add ex Q5: The spirit of the proof is essentially same with the content of tutorial 29/11 except that
you are required to map everything back to strip in order to apply Three strip theorem. I
here give a detailed proof in the tutorial.

Claim: lim|z|→1 |f(z)| = 1 or r2.

Suppose we can find {xn}, {yn} so that |yn|, |xn| → 1 but |f(xn)| < √r1 and |f(yn)| > √r1,
for all n. By continuity, there exists |zn| → 1 so that |f(zn)| =

√
r1. But since ∂B√r1 is

compactly contained in A(1, r2). The inverse is still compact which is away from ∂A(1, r1).
This contradicts with the existence of zn. So we may assume that if |z| close enough to 1,
then |f(z)| will be close to 1.

By Bolzano Weierstrass theorem and open mapping theorem, every |zn| → 1 has a
convergent subsequence so that |f(znk

)| → 1. Therefore, the claim is true. Similarly,
lim|z|→r1 |f(z)| = r2.

By three circle theorem or maximum principle on log |f |, for any z ∈ A(1, r1),

log |f | = log |z|
log r1

log r2.
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That is |f | = |z|α, where α = log r2/ log r1. Noted that zα is not necessarily well defined
on A(1, r1). If α is integer, then we can apply open mapping theorem and injectivity to
conclude that α = 1. To show this,

f ′(z)

f(z)
=

∂

∂z
log f

=
∂

∂z
log |f |2

= α
∂

∂z
log |z|2

= αz−1.

Integrating over a sphere inside A(1, r1) and uses argument principle, we conclude that
α ∈ Z.


